7,207 research outputs found

    Temperature and size-dependent suppression of Auger recombination in quantum-confined lead salt nanowires

    Full text link
    Auger recombination (AR) of the ground biexciton state in quantum-confined lead salt nanowires (NWs) with a strong coupling between the conduction and the valence bands is shown to be strongly suppressed, and only excited biexciton states contribute to Auger decay. The AR rate is predicted to be greatly reduced when temperature or the NW radius are decreased, and the effect is explained by decrease in both the population of excited biexciton states and overlap of phonon-broadened single- and biexciton states. Suppression of AR of multiexciton states exhibiting strong radiative decay makes obviously lead salt NWs a subject of special interest for numerous lasing applications.Comment: 4 pages, 3 figure

    New Types of Thermodynamics from (1+1)(1+1)-Dimensional Black Holes

    Full text link
    For normal thermodynamic systems superadditivity §\S, homogeneity \H and concavity \C of the entropy hold, whereas for (3+1)(3+1)-dimensional black holes the latter two properties are violated. We show that (1+1)(1+1)-dimensional black holes exhibit qualitatively new types of thermodynamic behaviour, discussed here for the first time, in which \C always holds, \H is always violated and §\S may or may not be violated, depending of the magnitude of the black hole mass. Hence it is now seen that neither superadditivity nor concavity encapsulate the meaning of the second law in all situations.Comment: WATPHYS-TH93/05, Latex, 10 pgs. 1 figure (available on request), to appear in Class. Quant. Gra

    Impact Excitation by Hot Carriers in Carbon Nanotubes

    Full text link
    We investigate theoretically the efficiency of intra-molecular hot carrier induced impact ionization and excitation processes in carbon nanotubes. The electron confinement and reduced screening lead to drastically enhanced excitation efficiencies over those in bulk materials. Strong excitonic coupling favors neutral excitations over ionization, while the impact mechanism populates a different set of states than that produced by photoexcitation. The excitation rate is strongly affected by optical phonon excitation and a simple scaling of the rate with the field strength and optical phonon temperature is obtained.Comment: 5 pages 4 figure

    Molecular kinetic analysis of a finite-time Carnot cycle

    Full text link
    We study the efficiency at the maximal power ηmax\eta_\mathrm{max} of a finite-time Carnot cycle of a weakly interacting gas which we can reagard as a nearly ideal gas. In several systems interacting with the hot and cold reservoirs of the temperatures ThT_\mathrm{h} and TcT_\mathrm{c}, respectively, it is known that ηmax=1Tc/Th\eta_\mathrm{max}=1-\sqrt{T_\mathrm{c}/T_\mathrm{h}} which is often called the Curzon-Ahlborn (CA) efficiency ηCA\eta_\mathrm{CA}. For the first time numerical experiments to verify the validity of ηCA\eta_\mathrm{CA} are performed by means of molecular dynamics simulations and reveal that our ηmax\eta_\mathrm{max} does not always agree with ηCA\eta_\mathrm{CA}, but approaches ηCA\eta_\mathrm{CA} in the limit of TcThT_\mathrm{c} \to T_\mathrm{h}. Our molecular kinetic analysis explains the above facts theoretically by using only elementary arithmetic.Comment: 6 pages, 4 figure

    Heavy doping effects in high efficiency silicon solar cells

    Get PDF
    A model for bandgap shrinkage in semiconductors is developed and applied to silicon. A survey of earlier experiments, and of new ones, give an agreement between the model and experiments on n- and p-type silicon which is good as far as transport measurements in the 300 K range. The discrepancies between theory and experiment are no worse than the discrepancies between the experimental results of various authors. It also gives a good account of recent, optical determinations of band gap shrinkage at 5 K

    Entropies Galore!

    Full text link

    Gedanken experiments on nearly extremal black holes and the Third Law

    Full text link
    A gedanken experiment in which a black hole is pushed to spin at its maximal rate by tossing into it a test body is considered. After demonstrating that this is kinematically possible for a test body made of reasonable matter, we focus on its implications for black hole thermodynamics and the apparent violation of the third law (unattainability of the extremal black hole). We argue that this is not an actual violation, due to subtleties in the absorption process of the test body by the black hole, which are not captured by the purely kinematic considerations.Comment: v2: minor edits, references added; v3: minor edits to match published versio

    Quasi-Homogeneous Thermodynamics and Black Holes

    Get PDF
    We propose a generalized thermodynamics in which quasi-homogeneity of the thermodynamic potentials plays a fundamental role. This thermodynamic formalism arises from a generalization of the approach presented in paper [1], and it is based on the requirement that quasi-homogeneity is a non-trivial symmetry for the Pfaffian form δQrev\delta Q_{rev}. It is shown that quasi-homogeneous thermodynamics fits the thermodynamic features of at least some self-gravitating systems. We analyze how quasi-homogeneous thermodynamics is suggested by black hole thermodynamics. Then, some existing results involving self-gravitating systems are also shortly discussed in the light of this thermodynamic framework. The consequences of the lack of extensivity are also recalled. We show that generalized Gibbs-Duhem equations arise as a consequence of quasi-homogeneity of the thermodynamic potentials. An heuristic link between this generalized thermodynamic formalism and the thermodynamic limit is also discussed.Comment: 39 pages, uses RevteX. Published version (minor changes w.r.t. the original one

    General pseudoadditivity of composable entropy prescribed by existence of equilibrium

    Full text link
    The concept of composability states that entropy of the total system composed of independent subsystems is a function of entropies of the subsystems. Here, the most general pseudoadditivity rule for composable entropy is derived based only on existence of equilibrium.Comment: 12 page
    corecore